Stronger Linear Programming Relaxations
نویسنده
چکیده
منابع مشابه
Manipulating MDD Relaxations for Combinatorial Optimization
We study the application of limited-width MDDs (multivalued decision diagrams) as discrete relaxations for combinatorial optimization problems. These relaxations are used for the purpose of generating lower bounds. We introduce a new compilation method for constructing such MDDs, as well as algorithms that manipulate the MDDs to obtain stronger relaxations and hence provide stronger lower bound...
متن کاملCutting planes for RLT relaxations of mixed 0-1 polynomial programs
The Reformulation-Linearization Technique (RLT), due to Sherali and Adams, can be used to construct hierarchies of linear programming relaxations of mixed 0-1 polynomial programs. As one moves up the hierarchy, the relaxations grow stronger, but the number of variables increases exponentially. We present a procedure that generates cutting planes at any given level of the hierarchy, by optimally...
متن کاملA hierarchy of relaxations for nonlinear convex generalized disjunctive programming
We propose a framework to generate alternative mixed-integer nonlinear programming formulations for disjunctive convex programs that lead to stronger relaxations. We extend the concept of “basic steps” defined for disjunctive linear programs to the nonlinear case. A basic step is an operation that takes a disjunctive set to another with fewer number of conjuncts. We show that the strength of th...
متن کاملUsing Bit Representation to Improve LP Relaxations of Mixed-Integer Quadratic Programs
A standard trick in integer programming is to replace each bounded integer-constrained variable with a small number of binary variables, using the bit representation of the given variable. We show that, in the case of mixed-integer quadratic programs (MIQPs), this process can enable one to obtain stronger linear programming relaxations. Moreover, we give a simple sufficient condition under whic...
متن کاملRestless Bandits, Linear Programming Relaxations and a Primal-Dual Heuristic
We propose a mathematical programming approach for the classical PSPACE hard problem of n restless bandits in stochastic optimization. We introduce a series of n increasingly stronger linear programming relaxations, the last of which is exact and corresponds to the formulation of the problem as a Markov decision process that has exponential size, while other relaxations provide bounds and are e...
متن کامل